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Arsenic in Latin America

1.  Introduction

Arsenic (As) is a metalloid abundantly present in the Earth’s crust. Exposure in humans occurs through 
the consumption of contaminated water and food [1]. Pollution comes mainly from natural sources, i.e., 
from the release of As to soil and aquifers due to volcanic phenomena and disintegration of rocks. A few 
anthropic activities such as mining, industrial processes, smelting of metals, production of pesticides and 
wood preservatives [1] are sources of contamination. Although natural mineralization and microbial activities 
increase the mobilization of As in the environment, human activities exacerbate As contamination in soil and 
in water supplies [2]. Chronic exposure to As via drinking water has received more and more attention for 
its high prevalence in many parts of the world, and for the growing body of evidence of its impact on health 
[3]. Contamination of water by As is a worldwide problem with high impact in the poorest regions [4], with 
more than 226 million people exposed [5,6]. The most affected populations are those in low income countries. 
The higher concentrations and, consequently, the most significant health problems are localized in Argentina, 
Bangladesh, Nepal, Chile, China, Hungary, India, Mexico, Romania, Taiwan, Vietnam and the USA [7]. In 
Latin America (LA), the problem affects at least 14 countries (Argentina, Bolivia, Brazil, Chile, Colombia, 
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Cuba, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Peru and Uruguay), and the number 
of exposed people could be estimated in around 14 million. The most critical areas are in Argentina, Chile and 
México [8-9,10,11,12].

2.  Distribution of arsenic in Latin America

Arsenic presence has been identified in many LA countries in a wide range of concentrations from various sources, mainly 
natural. Arsenate (As(V)) is the most abundant chemical form. A summary of As occurrence in each country is given 
below. Figure 1 shows the countries where natural As in water has been detected.

Figure 1. Distribution of arsenic in Latin America.

Argentina.- A compilation of studies conducted in Argentina related to the presence of As in water has been reported in 
various publications [7-12]; the Chaco-Pampean plain (about 1 million km2) is the largest area affected by groundwater 
As contamination in LA. Arsenic release involves the influx from dissolution of volcanic glass, adsorption of As on Fe 
and Al mineral phases in relatively low pH zones, and high mobility of As in high pH zones [9]. In addition, mineralized, 
hydrothermal zones and hot springs are also major geogenic sources [9]. Co-existence of As and F in groundwater of 
the Chaco-Pampean plain has also been remarked [9]. Approximately 88% of 86 groundwater samples collected in 2007 
exceeded the WHO guideline value (see section 5), posing a risk to the population since this water is used for human and 
livestock consumption. Hydrogeochemical studies have also been performed in the Salí river basin part of the Tucumano-
Santiagueña hydrogeological province [9]. Arsenic concentrations ranged from 11.4 to 1,660 mg/L, with 100% of the 
samples above the WHO guideline value. Leaching from pyroclastic materials is favored by high pH and high bicarbonate 
waters. The presence of As in surface and groundwaters of the Argentine Altiplano (Puna) and Subandean valleys, which 
are consumed by 355,000 people, was also evaluated [9]. The concentrations measured in 61% of the 62 samples collected 
in an area of 30,000 km2 exceeded the WHO limit. Arsenic occurrence was ascribed to geogenic sources [9]. 

Most of the studies in Argentina have focused on the sources and processes leading to arsenic enrichment in ground- 
and surface waters, finding that natural sources and geochemical conditions are the ones that affect arsenic occurrence 
and distribution the most.
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Bolivia.- The presence of As was identified in various areas of Bolivia, mainly related to mining activities, ore deposits, 
geothermal manifestations, and leaching of volcanic rocks [9,10]. Many of the studies have focused on the Pilcomayo 
river basin and the Poopó lake basin [9]. Arsenic concentrations were above the WHO guideline value in 95% of the 41 
sampled wells, with seven sites along four rivers reaching 623 mg/L. This was related to water contact with alluvial material 
in lower terrains, arsenopyrite oxidation, and dissolution from volcanic rocks. Groundwater average As concentration was 
47 mg/L and ranged from below the detection limit to 200 mg/L in Kondo K, 245 mg/L in Santuario de Quillacas, 152 mg/L 
in the central region, and 187 mg/L in Pampa Aullagas. The Poopó river contained the highest As concentrations of the 
sampled surface waters, with 11,140 mg/L in the dry period. Geothermal processes are the main natural sources of As in 
the area; anthropogenic contamination is related to mine tailings [9]. The importance of mining in Bolivia is reflected in 
As occurrence; however, natural sources like geothermal processes are also an important source of As contamination in 
waters.

Brazil.- Mining has been an important source of As in the Iron Quadrangle at the Minas Gerais state [9,10]. Arsenic 
presence is related to the natural leaching of rocks and soils, as well as mining operations [10]. In the Ribeira valley 
(southeastern Brazil), Pb and As contaminated the Ribeira river as a result of Pb-Zn ore production and smelting. The 
Santana district in the Amazon region is also contaminated with As (up to 2.0 mg/L in some wells) produced from 
Mn ore benefit [9]. Environmental studies carried out in Brazil have shown that arsenic contamination in surface and 
groundwaters is mainly related to mineralization and ore exploitation. 

Chile.- The area of Atacama Desert, northern Chile, is naturally rich in As; local people have been exposed to this 
metalloid for more than 4500 years [8]. In the Loa river, As concentrations of up to 2,000 mg/L were measured; these are 
the result of high evaporation at alkaline pH, and high salinity [9,10]. Arsenic-related health effects from As-rich drinking 
water pumped from this river were identified as early as 1962. Arsenic is mainly released from volcanic rocks and sulfide 
ore deposits at the Andean range and mobilized by snowmelts and rain to rivers and springs. At the Camarones valley, 
drinking water from waterfalls and from the Camarones river contains 48.7 mg/L and 1,252 mg/L of As, respectively [9]. 
In the Tarapacá region, As occurrence was ascribed to the presence of volcanic sediments, salt lakes, thermal areas, the 
predominance of closed basins, and anthropogenic sources [9]. However, As exposure has decreased, and As-related 
problems have been solved in most of the country [8,9]. The Atacama desert has been identified as one of the oldest 
places in the world where human exposure to arsenic has occurred undoubtedly due to natural As enrichment. In contrast 
with other countries where health effects have been caused mainly by groundwater consumption, as in Bangladesh and 
Argentina, superficial water is the main source of water affecting Chilean inhabitants. 

Colombia.- Colombian geology indicates the presence of rocks containing As minerals; nonetheless, few studies have 
been developed to assess the actual concentrations in water [9]. A review of the occurrence and sources of As in Colombia 
was reported in 2014 [13]. Information showed that As concentrations in surface and groundwater, related mainly to 
mining and agriculture, exceeded national standards at some sites. The authors of this review highlight the importance of 
performing more research on the occurrence, origin and distribution of As in the country [13].

Cuba.- Arsenic has been detected at some sites in Cuba. At Isla de la Juventud, only one spring close to the Delita mine 
out of eight sampled points in the watershed was contaminated with up to 250 mg/L As [9,10,14]. The scarce presence of 
As in Cuba may be due to the geological characteristics of the island, with a predominance of limestones; however, it may 
reflect the need of additional studies covering the entire territory.

Ecuador.- In Papallacta lake, concentrations of As up to 369 mg/L at the surface and from 289 to 351 mg/L at depth were 
measured in water [9,10,15]. Discharges of geothermal waters to the Tambo river are the main source of As in the lake.

El Salvador.- Arsenic has been detected in the Olomega, Ilopango and Coatepeque lakes with the highest concentration 
(4,210 mg/L) measured at the Olomega lake. These waters are used by people living on the watersheds [9,10,16]. Arsenic 
in the Ilopango lake is linked to hydrothermal fluids. In the Ahuachapán and Berlin geothermal fields, As from geothermal 
origin was detected in springs and domestic wells. Arsenic was also found in Las Burras and Obrajuelo aquifers [9]. 
In the Bajo Lempa region, As presence is related to its occurrence in rocks and geothermal fluids, and probably to an 
anthropogenic source [17]. The studies developed in El Salvador indicate, thus, that geothermal processes are the main 
source of As in the country.

Guatemala.- At Mixco, in 2007, a concentration of 15 mg/L As, originated from leaching of volcanic rocks, was measured 
in the water of a well used for drinking water supply [9,18]. Later, in the area of the Marlin mine, up to 261 mg/L As were 
measured in wells downgradient from the tailings [9]. A relatively low As concentration was measured in the water from 
a well at Mixco; however, this concentration is still above WHO drinking water regulatory values and may pose a risk to 
the population. 
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Mexico.- Chronic As poisoning was first identified in 1958 at Comarca Lagunera, northern México [19]. Since then, 
As has been detected in many areas of the country. Its presence is mainly related to geogenic sources – mineralization, 
geothermal systems, sorption and release from minerals, salinization – but also to anthropogenic activities in some areas. 
An overview of As occurrence in groundwater and its possible sources was reported in 2008 [20]. In addition to this, areas 
with presence of As and F were described in 2013 [21], and another study [22] focused on the occurrence and mechanisms 
of As enrichment in geothermal zones.

Comarca Lagunera has been one of the most studied areas in Mexico, with groundwater As concentrations of up to 750 
mg/L [10,23]. Although various sources have been proposed [24], it was concluded recently that the most probable one is 
related to extinct hydrothermal activity and sedimentary processes [23]. In addition, intensive groundwater exploitation 
and dam construction produced the advance of As rich water to the main granular aquifer [24]. Concentrations of As 
and F above the Mexican drinking water standards have also been measured at Chihuahua state in northern México 
[25,26]. Hydrogeological and geological interpretations indicated a geogenic source related to the recharge flow coming 
from mountains presenting arsenopyrite deposits [27]. In mining zones of México where As contamination has been 
identified, its presence in groundwater is related to natural and/or anthropogenic sources. At Zimapán, Hidalgo, water 
interaction with As-bearing minerals releases As to the deep fractured limestone aquifer, while the shallow aquifer was 
contaminated by tailings and infiltration of As-enriched water from smelter stacks [28,29]. In other non-mining areas 
like the Independencia basin, Guanajuato state, central México, weathering of rhyolites and oxidation of As-bearing 
minerals result in high As and F concentrations [30]. Hydrogeochemical and isotopic results indicated that As originates 
from the dissolution of silicates, while F is related to silicates, fluorite dissolution, thermal water, and a long residence 
time of groundwater. At Juventino Rosas municipality, also in Guanajuato state, hydrogeological and geothermal factors 
indicated that rhyolite units are the most probable source of As and F [31]. At Los Altos de Jalisco, western Mexico, mean 
As concentration in drinking water varied from 14.7 mg/L to 262.9 mg/L, reaching this value in the city of Mexticacán 
[32]. Figure 2 represents the oxidation of minerals with As in a Mexican mining zone. 

High As concentrations have been detected mainly in Mexican aquifers, many of them corresponding to drinking 
water sources. However, As-enriched surface and groundwaters are also used for irrigation, and the element has been 
found in some crops. Arsenic is mainly related to natural sources, although, in mining areas, it is also originated from 
anthropic activities. 

Figure 2. Oxidation of minerals with As in a Mexican mining zone.

Nicaragua.- Geogenic sources contaminated drinking water, from 10 to 122 mg/L As, in the southwestern part of the 
Sébaco valley. At El Zapote, arsenicosis was detected in people who had been consuming water from a polluted well 
(1,320 mg/L As) for two years; this well was closed in 1996. A study developed in 2004 showed that the northern zone 
of the country presented the highest As contents. At San Juan de Limay, presence of geogenic As was identified in 2005 
[9,10,33,34]. The importance of As detection and analysis is shown by the closure of the polluted well at El Zapote, which 
stopped the exposure of the population to this highly contaminated water. 

Peru.- The presence of As has been determined at several sites in Peru, mainly in the Andean region, released by 
weathering and mining operations. The Locumba river and its tributaries contain up to 1,680 mg/L. In the area of the 
Yucamane volcano, volcanic rocks and pyroclastic materials release As to the Collazas and Salado rivers. In the area of 
Puno, Andean highlands, As concentrations ranged from 140 to 230 mg/L in the river water. The Rimac river basin has 
been contaminated by mining activities, leaching of volcanic rocks and ore deposits with up to 1,630 mg/L As that were 
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measured in the year 2000 at Puente Santa Rosa [9]. In Peru, as observed in other countries, mineralization and mining 
activities are significant As sources.

Uruguay.- In the Raigón aquifer, in the southwestern part of the country, As concentrations ranged from 25 to 50 mg/L, 
and were related to continental sediments containing volcanic ash [9,10,35]. The importance of a multidisciplinary 
approach to determine As in health and in the environment of Uruguay was highlighted [36]. More studies are needed to 
have a complete overview of As occurrence, sources and possible health impact in Uruguay. However, the concentrations 
measured so far are lower than those determined in other countries like Argentina and Mexico.

3.  Analytical methods for the analysis of arsenic in Latin America

The chemical behavior of As depends on environmental conditions such as acidity, oxidation-reduction state of the element, 
presence of iron, organic matter or other chemical species (e.g., sulfur), etc. Due to the low concentrations at which As may 
be present in an environment and the chemical behavior of As species, the selection of an adequate analytical technique 
for As determination will depend on the objectives of the study, the access to the appropriate analytical methodology, the 
cost of the analyses, and the water matrix. For these reasons, researchers seek analytical techniques with a high degree of 
precision and accuracy, as well as high sensitivity, which allow measuring concentrations up to the µg/L level.

A recent work compiles the information from 167 scientific manuscripts identified in the last 18 years, most of them 
focused on the work done in LA countries [10].

The most widely analytical technique used for As determination is atomic absorption spectrometry (AAS), specifically 
with the method of sample introduction through hydride generation (HG-AAS) [10]. The detection limit using HG-AAS is 
about 0.1 - 0.6 µg/L [11]. This technique presents important advantages, such as improved sensitivity and selectivity, and 
sample salinity does not affect analytical results [11]. Additionally, the HG-AAS technique is a simple methodology that 
requires relatively inexpensive and very versatile instrumentation, with excellent detection power for total and inorganic 
As [37]. From 167 identified papers in the last 18 years, 57% of them (95 papers) referred to the use of AAS as the most 
used analytical technique in LA for As determination. Another 40% of these documents are written by researchers from 
Mexico, 19% from Argentina and 16% from Brazil. Other countries that report scientific articles on the quantification of 
AAS by AAS are Cuba, Ecuador, Peru and Venezuela (the four countries represent 1%), Uruguay (2%) and Chile (4%). 

The second most used analytical technique (i.e. 26% of the aforementioned 167 papers), is inductively coupled plasma 
spectrometry (ICP), mainly coupled with mass spectrometry ICP-MS [10]. From them, 30% of publications are from 
Mexico, 18% from Brazil and 16% from Argentina, while Chile and Bolivia report only 4%. The detection limit reached 
by this technique is 0.1 µg/L, and there is no need of sample preconcentration [11]. In general, ICP-MS and inductively 
coupled plasma optical emission spectrometry (ICP-OES) are robust and sensitive techniques, but they require very 
expensive equipment, special facilities and a long and complex training of analysts [37]. 

Electrochemical analytical techniques are the third most used methodology for As determination [10]. The anodic 
voltammetry technique has high analytical sensitivity and low cost, and it is easy to use within a concentration interval 
between 0.1 and 300 µg/L [37]. Argentina, Brazil, Chile, Ecuador and Venezuela reported the use of electrochemical 
techniques for the determination of As mainly in water and food samples [10].

The fourth most used technique for As determination is UV-VIS molecular spectrometry [10]. The methods based on 
this analytical technique are simple and economical; however, although sensitivity is high (10 to 50 mg/L), accuracy is 
low [11]. Mexico and Cuba are the main countries that reported the use of this technique for As determination in samples 
of water and mine tailings [10].

Figure 3 shows the schematic representation of the four main analytical techniques for As determination according to 
Gürkan et al. [38].
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Figure 3. Schematic representation of the four main analytical techniques for As determination: A) HG-AAS, B) ICP-
MS, C) Anodic voltammetry, D) UV-Vis spectrometry (Gürkan et al., 2015 [38], with permission).

The two most widely used techniques for As speciation are AAS and ICP combined with separation techniques 
(chromatography), and have been used together or coupled with other analytical techniques (hyphenated techniques) 
[10]. These coupled techniques are the best option for the determination of arsenical species because of their selectivity, 
adequate precision, high level of automation and relatively short response times [37]. X-ray fluorescence spectrometry 
is mainly used for the identification and determination of As in solid samples [10]. In quartziferous sands, the limit of 
detection reaches 40 mg/kg (without interferences). Portable equipment can detect up to 60 mg/kg [11]. The future of this 
technique, with reference to As determination in waters at the trace level, will be focused mainly through the development 
of preconcentration methodologies adaptable to laboratory equipment and to on-site determination [11].

Other techniques are neutron activation analysis (NAA) and Surface Plasmon Resonance Nanosensor (SPRN) [10]. 
NAA is an accurate and sensitive methodology; it has been used for the determination of total As in biological samples 
(nail, hair and other tissues) with a limit of detection of 0.001 µg/g [11]. SPRN is an autonomous sensor for mapping and 
monitoring As concentrations in water [39]. This system can be integrated to a portable suitcase, it is inexpensive, and can 
measure As concentrations below 5 mg/L [39]. However, there are still no results on the application of this method. The 
ARSOlux Biosensor has been tested in Argentina [40]. 

4.  Effect of arsenic exposure on human health in Latin America

The consumption of water with high As concentrations for a prolonged period has been associated with a variety of health 
problems including issues related to skin, lungs, bladder, and kidneys, as well as neurological disease, cardiovascular 
disease, perinatal conditions and other benign diseases [10,41-46]. In Argentina, since the beginning of the 20th century, 
the set of symptoms and signs (clinical manifestations) associated with the consumption of water or food contaminated with 
As was denominated chronic endemic regional hydroarsenicism (HACRE, from the Spanish acronym, Hidroarsenicismo 
Crónico Regional Endémico), term that nowadays is being used by many local and regional authors [4,7,46-49].

Arsenic has been classified as a human carcinogen, and inorganic As (iAs) has been related to the development of skin, 
lung, liver, kidney, bladder and prostate cancer [50]. Prolonged As ingestion from water or food produces characteristic skin 
lesions such as melanosis, leukomelanosis, and keratosis. Other pathologies include diabetes mellitus, peripheral vascular 
disease, cardiovascular and respiratory diseases, and a wide variety of clinical manifestations including neurological 
effects, anemia, leukopenia, liver dysfunction, and high blood pressure.
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To date, most research has examined cancer incidence after exposure to high As concentrations. However, numerous 
studies have reported various health effects caused by chronic exposure to low concentrations of As [11,46]. More 
systematic studies are needed to determine the link between As exposure and its related cancer and non-cancer end points 
[51].

It is known that human biotransformation of iAs generates metabolites of various levels of toxicity (Figure 4), and this 
is one of the factors that determines the nature and magnitude of its harmful effects. Trivalent species (arsenite (As(III)), 
monomethylarsonous acid (MMA(III)) and dimethylarsinious acid (DMA(III)) showed to be more toxic than pentavalent 
species (arsenate (As(V)), monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)), due to their ability 
to bind to more than two hundred enzymes [52]. MMA(III) is, among all As metabolites, the most toxic metabolic 
intermediate, while DMA(V) is the least toxic species [53]. However, the quantification of As metabolic intermediates 
in human biological fluids, based on As oxidation state, is not feasible in many cases due to the lability of trivalent 
intermediates, which are rapidly oxidized to pentavalent forms. Therefore, the urinary metabolic profile of As is usually 
considered as the proportions of arsenite, arsenate, monomethylated arsenic (MMA(III) + MMA(V)) and dimethylated 
arsenic (DMA(III) + DMA(V)). Based on the toxicity of the metabolic intermediates, a protective metabolism of As is 
the one that shows elevated urinary DMA percentage, and low MMA, As(III) and As(V) percentages. On the contrary, an 
unfavorable metabolism will be the one that shows an elevated MMA percentage at the expense of a low DMA percentage. 
There is a wide variability in the relative proportions of urinary iAs metabolites between individuals. Percentages of the 
major three As species can vary from 5 to 25% for iAs (As(III) + As(V)), 10 to 30% for monomethylated metabolites 
(MMA(III) + MMA(V)), and 50 to 85% for dimethylated metabolites (DMA(III) + DMA(V)) [54,55]. Genetic factors 
(presence of polymorphism in genes linked to the metabolism of As) and non-genetic factors (age, gender, nutritional 
status, social habits, among others) have been studied in relation to their influence on As biotransformation processes and, 
consequently, on its toxicity [55]. Then, the analysis of the urinary metabolic profile will help predicting individual risk 
to develop As toxic effects.

Figure 4. Simplified schematic representation of arsenic biotransformation (2). AsIII: arsenite; AsV: arsenate; 
AsIII MT: arsenite methyltransferase; DMAIII: dimethylarsinious acid; DMAV: dimethylarsinic acid; GSH: reduced 
glutathione; GSSG: oxidized glutathione; MMAIII: monomethylarsonous acid; MMAV: monomethylarsonic acid; SAH: 
S-adenosylhomocysteine; SAM: S-adenosylmethionine.

Even though the presence of As in drinking water has been described in practically all LA countries, studies relating 
As exposure to health effects are limited to a few ones. Chile, Mexico and Argentina are the countries where most studies 
on health effects originated from As exposure have been performed. Lung cancer is the most studied adverse effect of As 
exposure, followed by skin lesions, bladder cancer, effects of early exposure to As, skin cancer, immunotoxicity, kidney 
cancer, cardiovascular disease and other cancers (liver, prostate, larynx). Sufficient evidence of the association between 
As exposure and skin, lung and bladder cancers has been reported in Argentina, Chile and Mexico. Studies conducted 
in Argentina and Chile revealed a clear trend in lung cancer standardized mortality rates and odds ratios with increasing 
As concentration in drinking water ranging from less than 10 μg/L to a 65-year average concentration of 200-400 μg/L 
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[56,57]. Development of bladder cancer was related to As concentrations of more than 100 μg/L, and odds ratios increased 
significantly with the level of exposure [58,59].

The health effects resulting only from the early exposure to As are difficult to evaluate, since much of the population 
continues to be exposed until adult life, that is, they do not interrupt their exposure. In that way, the region of Antofagasta, 
in the north of Chile, has presented a unique pattern of human exposure to As through drinking water. Between 1958 and 
1970, As concentration in water was above 800 µg/L. In 1970, with the installation of a treatment plant, As concentration 
in water decreased to values close to 10 µg/L. The population born in that area in the period between 1958 and 1970 
presents the characteristics of having been early exposed to As. A steep increase in adult mortality due to lung, bladder 
cancer and kidney cancer was observed in the Chilean population, probably due to in utero and early life exposure to As 
[60,61]. 

Evidence of association between As exposure and kidney and liver cancer mortality rates was also reported in Chile 
and Argentina [46,56,62]. For other types of cancers (prostate, leukemia, brain, colon, breast, larynx, stomach, cervix 
and endometrium), the evidence in LA countries is scarce or absent [63-64,65]. While the carcinogenicity of As has been 
confirmed for specific cancers, the mechanisms behind the disease are still not well understood. Several mechanisms have 
been implicated in the development of As-associated cancers, including the generation of reactive oxygen species (ROS), 
the inhibition of DNA repair process, alterations in cellular signal transduction and alterations in DNA methylation. 
No single mechanism has emerged as a key event, and it is likely that iAs exerts carcinogenic effects through multiple 
mechanisms [61].

According to several studies, conducted mainly in Mexico, an association between As exposure and diabetes seems 
to occur. However, more studies are needed, specially focusing on the potential mechanisms of As-induced diabetes in 
humans. Metabolomic studies seem to be a way to discover the biochemical pathways that relate As exposure to diabetes 
[66]. The available information on the association of exposure to As and cardiovascular disease, liver dysfunction and 
chronic kidney disease covered a wide range of levels of exposure [67-68,69,70]. However, this information is scarce and 
inconclusive. 

There is no curative treatment for arsenicosis and its clinical manifestations. However, national guidelines for the 
treatment have been published by the Ministries of Health of Argentina [71], Chile [72] and Peru [73]. In all cases, first-
line actions should be focused on avoiding exposure by means of providing alternative sources of safe water. In Chile, the 
therapeutic decisions are based on urinary As levels [72] and the presence of symptoms. Indications include education, 
nutritional assessment, urinary As monitoring, antioxidant intake and referral to a specialist, if applicable. In Argentina, 
the national guidelines recommend avoiding exposure and symptomatic support treatment consisting of healthy protein 
foods diet [71]. In addition, the guideline indicates that specific symptoms should receive the corresponding treatment 
measures, as follows: stop smoking in case of chronic bronchitis, topical keratolytics for keratosis, and surgical exeresis 
for skin tumors [71].

Nevertheless, there are studies that investigate the influence of nutrients on As metabolism, which could, in turn, 
influence As toxicity. Studies conducted in Mexico and Uruguay investigated whether the differences in dietary intake 
of selected micronutrients and foods are associated with the metabolism of iAs. The daily intake of methionine, choline, 
folate, vitamin B12, vitamin C, Fe, Zn, Se and Na was significantly associated with the reduction of % iAs, and/or % 
DMA increase in one study conducted in Mexico [74]. Higher meat and folate consumption, a diet rich in green leafy 
and red-orange vegetables and eggs contributed to a higher methylation capacity according to the study conducted in 
Uruguayan children [75]. 

In conclusion, in LA, research focusing on curative options for chronic As exposure is beginning and it is aligned to 
the latest international research.

5.  Regulations

The World Health Organization (WHO) and different environmental agencies such as the United States Environmental 
Protection Agency and the European Environment Agency, recommend a value of no more than 0.01 mg/L of As in 
drinking waters. This value has been adopted in most of the LA countries. In Table 1, the different regulations are 
displayed, with the concentration limits and the corresponding normative.



// Vol. 1, No. 1, December 2019 Arsenic in Latin America

62

Country Value (mg/L) Normative Reference
Argentina 10 (Still under discussion) CAA (Argentine Food Code) [76]

Bolivia 10 NB 512 [77]
Brazil 10 Regulation 2914 [78]
Chile 10 (a period of 10 years set to reach 

this value)

NCh409/1 [79]

Costa Rica 10 CAPRE normative, Min. Salud [80,81]
Colombia 10 Resolución 2115 [82]
Ecuador 10 Instituto Ecuatoriano de Normalización [83]

Guatemala 10 COGUANORNGO 29.001, CAPRE 

normative

[80,84]

Mexico 25 NOM-127-SSA1-1994 (modif. 2000) [85]

Nicaragua 10 CAPRE normative, INAA 2001 [80,86]
Peru 10 (not established period to attain 

this maximum)

Min. Salud [87]

Uruguay 20 Instituto Uruguayo de Normas 

Técnicas

[88]

Venezuela 20 Ministerio de sanidad y Asistencia 

Social

[89]

Table 1. Limits for As in drinking water in different LA countries

Honduras, El Salvador, Panama and Dominican Republic also follow the CAPRE normative [80]. Additionally, in LA, 
the As provisional guideline value established by the WHO (i.e., 10 μg/L) became law in Honduras (1995), El Salvador 
(1997) and Panama (1999) [9].

6.  Arsenic removal technologies employed in Latin America

The most used processes for As removal employed in LA are adsorption, chemical precipitation, activated alumina, 
use of ion exchange resins, membrane technologies, distillation, and coagulation/filtration, which can be used alone 
or in combination. Use of geoadsorbents, natural materials, iron-based technologies, and solar applications can be also 
mentioned, especially at small scale or for households. Due to the amount of references on the subject and the multiple 
materials that can be used, only some references will be included here; the reader can consult references [9-10,11,21,46,90-
111] and others therein.

For large and medium plants, coagulation/adsorption/filtration processes have been widely used in LA, with examples 
in Argentina (Santa Fe and Salta) since the 1990’s. One of the most important ones is the patented ArCIS-UNR® 
process, developed at the Centro de Ingeniería Sanitaria-Universidad Nacional de Rosario, which uses polyaluminum 
chloride (PAC); it has been applied to real scale in populations up to 10,000 inhabitants. An optimized coagulation/
filtration technology has also been developed by the Instituto Nacional de Tecnología Industrial of Argentina (INTI) and 
applied to groundwaters of Taco Pozo (Chaco) and Lobos (Buenos Aires) [10,11,46]. In northern Chile, a coagulation 
technology using FeCl3 has been used since 1970 for plants in small and medium cities with centralized water supply 
[10,91]. In Guatemala, a full-scale treatment plant composed of a coagulation-filtration system with FeCl3 was installed 
in Mixco (close to the capital city) in 2008 [10]. In 1999, the Instituto Mexicano de Tecnología del Agua (IMTA) adopted 
a coagulation-flocculation process using Al2(SO4)3 as coagulant and other materials (zeolites, clays, bone carbon) as 
coadjuvants, which was tested in natural waters of Zimapán [10]. In Peru, a treatment plant in the city of Ilo was built in 



Arsenic in Latin America // Vol. 1, No. 1, December 2019 

63

1982; initially massive doses of 90% lime (CaO) were used, but the system was improved by the use of ferric chloride, 
ferric hydroxide plus sulfuric acid or Mg(OH)2 together with commercial and natural flocculants [10]. In Brazil, a process 
with PAC and aluminum sulfate with a chlorine preoxidation step has been described [10].

The use of membranes (mainly reverse osmosis processes, RO) is another largely employed alternative for As treatment 
in large-medium plants [10,46,90,96,97]. Several RO plants have been installed in Argentina (Santa Fe, Cordoba, and 
La Pampa). The most important ones are those installed in the southern periphery of Buenos Aires City by state-owned 
company AySA (Aguas y Saneamientos Argentinos), benefiting more than 400,000 inhabitants [10,11,46,49].In northern 
Chile, desalinization of sea water is a valid option for coastal cities, and RO desalination plants have been installed in 
Antofagasta and Arica, especially for mining zones [10,46]. In Chihuahua, Mexico, more than 280 small RO plants have 
been implemented in rural communities; ultrafiltration membranes were also used [10,46]. In 2007, a desalination plant 
with a capacity of 21,000 m3/day was installed in Los Cabos, Mexico [46].

On the other hand, in several places of LA, e.g. the Chaco-Pampean plain of Argentina, about 12% of the population 
is living in dispersed settlements consisting of less than 50 inhabitants, mostly the poorest members of the regional 
population. In these places, As is frequently found at high concentrations in water for human consumption. To solve 
the problem, a large number of commercial adsorbents or natural materials have been tested in different countries 
[10,11,46,90,96,97]. Most of them are materials containing iron or aluminum, but other constituents are also found in them. 
Aluminum hydrogels, Fe-rich laterites, commercial granular ferric oxide (GFO), granular ferric hydroxides/oxides (GFH/
GFO), hematite, goethite (a-FeO(OH)), magnetic δ-FeOOH nanoparticles, hydrated Fe(III) oxide (HFO) nanoparticles 
supported on polymers, iron oxide coated sand, composite iron matrices, Fe(III)-coated silica sand, metallurgical slags, 
lime, aluminum sulfate, activated alumina, diatomites, natural clays, bentonites, zeolites, zerovalent iron (ZVI) in the 
form of µFe(0) microparticles, Fe fillings, iron wool, nails or packing wire, iron nanoparticles (nZVI)), Fe-Cu bimetallic 
nanomaterials, manganese greensand, sand-anthracite, manganese oxides, carbon activated with copper sulfate, pisolite, 
volcanic stones, steel wastes, basic oxygen furnace sludge, ArsenXnp (a commercial As sorbent), etc. can be mentioned, 
among others [10,11,46]. A mixture of an oxidant, activated clays and a coagulant (aluminum sulfate or ferric chloride), 
patented as ALUFLOC, was developed by CEPIS/SDE/OPS and evaluated at household scale in Puno (Peru), Salta and 
Tucumán (Argentina) [10,90,96,97,109].

Biomaterials and low-cost organic materials, such as natural hydroxyapatite obtained from charred cow bones, milled 
bones, bone char modified with nZVI, nacre, shells, chitosan, chitosan beads impregnated with nZVI, dead aquatic 
macrophytes, dried macroalgae, totora (Schoenoplectus californicus), paja brava (Festuca orthophylla), cellulose, sedges, 
sorghum biomass, waste biomass, iron-enriched activated carbon from lignite, maracuya shell (some modified with 
Fe(III)), a bioadsorbent taken from passion fruit, a bioadsorbent obtained from orange albedo coated with Fe(III), etc., 
were also tested [10]. Bacteria like Pseudomonas aeruginosa, Microcystis novacekii and sulfate reducing bacteria (SRB) 
were reported to be used for As removal. Phytoremediation with aquatic macrophytes such as water hyacinth (Eichhornia 
crassipes), lesser duckweed (Lemna minor) and valdivia duckweed (Lemna valdiviana) were also assayed [10,90].

Another cost-effective, environmental-friendly treatment technology for As removal is the use of horizontal subsurface 
flow constructed wetlands (SSFCW). In Chile, SSFCW constructed with zeolite, limestone and cocopeat; in Mexico, 
SSFCW containing an iron oxide substrate (tezontle) with two plant species (Zantedeschia aethiopica and Anemopsis 
californica) and without them were evaluated. Two Cyperaceae species, Schonoeplectous americanus and Eleocharis 
macrostachya were also studied in a SSFCW prototype system [10,90]. Other studies optimized As removal by capacitive 
deionization [93,96] and in-line electrochlorination to produce hypochlorous acid for oxidation and coprecipitation of As 
and Fe [112].

Mining effluents containing As have been especially considered in LA. In Brazil, several works reported As precipitation 
with trivalent iron salts and lime (CaO or Ca(OH)2), and with Al-Fe (hydr)oxides, scorodite (FeAsO4·2H2O) formation 
from industrial solutions, and Mn3(AsO4)2.4H2O formation from nanosized birnessite (Mn(IV)). Coprecipitation by the 
use of selective coagulants/flocculants has been also studied to be applied in gold mining and other effluents [10,46,90]. In 
Chile, a plant for the treatment of mining effluents for dusts from copper smelters in the Chuquicamata and Ministro Hales 
minesand was constructed, stabilizing As as scorodite with ferric sulfate [46]. Byproducts of the iron mining industry, 
such as magnetite, hematite, iron hydroxides and/or foundry slag, have been also used to remove As [46]. Desalination 
plants applying RO processes have been used in Chile for the treatment of mining wastewaters [46].

Photochemical technologies were also important methods for As removal in LA. Photooxidation of As(III) with 
germicidal lamps (l = 253.7 nm) and H2O2 addition, a combined technology employing UV/H2O2 and adsorption in 
columns filled with TiO2 and GFH, and use of ZVI and nZVI plus solar irradiation have been tested [10,46,90]. The Solar 
Oxidation and Removal of As (SORAS) technology, a very simple process for poor, isolated populations, used with partial 
success in Bangladesh and India, was modified and tested in LA. This method consists in putting water in transparent 
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PET bottles and irradiating it with sunlight. This is done in the presence of small amounts of dissolved iron, causing 
the precipitation of iron(III) (hydr)oxides, As(III) oxidation and As(V) adsorption; clear water is obtained by further 
decantation or filtration (Figure 5). The addition of small amounts of citric acid - as drops of lemon juice - enhances 
the effectiveness of As removal due to the coupling of photo-Fenton processes. Because groundwaters in most regions 
of LA do not have enough iron to make the SORAS technology efficient, iron has to be externally added through some 
natural Fe-containing minerals or ZVI in different forms (iron wool, packing wire or nZVI). The method has been tested 
in laboratory waters and natural well waters of Argentina, Bolivia, Chile, Costa Rica, Mexico and Peru [10,46,90].

Figure 5. Schematic representation of the SORAS technology.

TiO2 heterogeneous photocatalysis is also a promising emergent technology which allows the simultaneous oxidation 
of As(III) and removal of organic pollutants, toxic metals and microbiological contamination. An iron source should be 
added to retain As on a solid surface. PET plastic bottles have been impregnated with TiO2 and used to remove As in 
Argentina and Brazil. Reduction of As(V) and As(III) over TiO2 under UV light has been also attained in deoxygenated 
suspensions, with identification of As(0) and arsine (AsH3) [10-1112,46,90,95,96,110].

A paper regarding toxicity of As(V) solutions has been also evaluated after treatment with nZVI with the AMPHITOX 
bioassay [113].

7.  Conclusions

The contamination of surface and groundwaters with As in LA is a relevant problem for the region due to its dramatic 
consequences on health. Arsenic presence has been identified in many LA countries in a range of concentrations and 
originated from various sources, although in most of the locations it comes from natural sources. The Chaco-Pampean plain 
in Argentina is the largest area affected by groundwater As contamination. Research on the chemical and hydrogeological 
processes of As release and mobilization has been also developed in Mexico, Chile, Bolivia, Peru and Nicaragua. In most 
of the contaminated areas, As originates from geogenic sources, mainly volcanic rocks, hydrothermal fluids and As-
bearing minerals. However, anthropogenic sources are also present in certain zones, most of them as a result of mining 
operations and, in some cases, related to agriculture. Mining is indeed the main As source in Brazil. It has been found that 
the element is in the As(V) form in most locations. 

Regarding analytical methods on As determination, 167 papers in scientific journals have been identified in the last 18 
years in LA. The most widely used analytical methodologies are AAS (57%), specifically HG-AAS, and ICP (27%), mainly 
coupled with MS. Electrochemical methods have been applied in Chile, Brazil and Argentina. UV-VIS spectrometry has 
been used mainly in Cuba and Mexico. XRF spectrometry, principally for solid samples, has been used in Mexico, Cuba, 
Brazil, Argentina, and Chile. Other methodologies are INAA, SPRN and the ARSOlux Biosensor. In LA, good scientific 
and infrastructure capacity for the analytical determination of As in various matrices is available.

Because the As problem has a great impact on health in LA, and its presence has also been reported in different 
matrices (food, hair, blood and bones), it is important to emphasize the quality assurance of the reported results. Therefore, 
it is suggested that a section dedicated to the interferences and the analytical quality control used for the quantification of 
this metalloid be added to the scientific publications, regardless of the analytical method used. This quality control could 
include some of the parameters established by ISO / IEC 17025: 2017 for analytical validation (uncertainty, repeatability 
and reproducibility, robustness), as well as the certified reference materials used.

Concerning effects on health, lung cancer is the most studied adverse effect of As exposure, followed by skin 
lesions, bladder cancer and the effects of early exposure to As. Chile is the country with the largest number of scientific 
publications related to the effects of As on health, followed by Mexico and Argentina, where studies on As exposure 
and cancer development are well described. Evidence of association between As exposure and kidney and liver cancer 



Arsenic in Latin America // Vol. 1, No. 1, December 2019 

65

mortality rates was also reported in Chile and Argentina. For other types of cancers (prostate, leukemia, brain, colon, 
breast, larynx, stomach, cervix and endometrium), the evidence is scarce or absent. While the carcinogenicity of As has 
been confirmed for several cancers, the mechanisms behind the disease are still not well understood, and, therefore, more 
well-designed studies are needed in that area. According to several studies, conducted mainly in Mexico, an association 
between As exposure and diabetes seems to occur; however, more studies should be conducted. In that way, metabolomic 
studies could help find some answers. The information available on the association of exposure to As and cardiovascular 
disease, liver dysfunction and chronic kidney disease covered a wide range of levels of exposure, but this information is 
still partial, scarce and inconclusive.

Investigations on As health effects are limited to Argentina, Chile and Mexico and, even in these countries, studies 
are scarce, scattered and consider different degrees of exposure, which hinders the comparison or integration into a meta-
analysis. In Argentina, an epidemiological study of national scope started in 2019; it includes an analysis of morbidity 
and mortality due to cancers associated with the exposure to As through water ingestion. This study could be extended to 
other LA countries.

Arsenic removal from water can proceed through adequate treatments. Methods for large and medium plants have 
been implemented in several places using the most common technologies (coagulation-precipitation and RO). Other 
technologies use a very large number of adsorbing materials (natural geological materials, iron oxides and hydroxides, 
calcite, clays, etc.). Sorption agents coming from plants and animal residues have been tested especially for small 
communities, disperse settlements or individual households of low economical resources, where simple and economical 
equipment that can be easily handled and maintained by the population is required. Procedures using zerovalent iron from 
diverse materials are affordable and easy to operate and maintain, and sunlight may be used to improve their effectiveness. 
Phytoremediation and wetland construction are also promising technologies. 

In addition, the LA experience gives valuable information that could be used to solve the As problem in other regions 
of the world, especially in countries of Asia where the first option is to find other water sources not contaminated with As. 
In all cases, water composition and socioeconomic features should be carefully considered for selecting the technology.

Although there are several sustainable solutions developed by local researchers, authorities, industries and international 
agencies have not practically developed any financial and technical cooperation action for mitigating the As problem in 
isolated rural and periurban LA populations, and As exposure has not been yet solved due to operation, social, and 
economic problems. In addition, there are zones still lacking As-free water options. Thus, much R&D work, together with 
political actions, should be undertaken in the region. 

Acknowledgments

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) from Argentina under 
PICT-2015-0208, and by BioCriticalMetals – ERAMIN 2015 grants. We appreciate the support of Olivia Cruz, Alejandra 
Aguayo, Nora E. Ceniceros Bombela and Blanca X. Felipe Martínez, from the Geophysics Institute at UNAM, who 
helped with the bibliographic search process.

References
[1] Argos, M., Ahsan, H., Graziano, J.H., 2012. Arsenic and human health: epidemiologic progress and public health 

implications. Rev Environ Health 27, 191-195.

[2] Lage, C.R., Nayak, A., Kim, C.H., 2006. Arsenic ecotoxicology and innate immunity. Integr Comp Biol 46, 1040-
1054.

[3] US Environmental Protection Agency, 2012.Arsenic in Drinking Water.US Environmental Protection Agency, United 
States.

[4] Litter, M.I., 2010. La problemática del arsénico en la Argentina: el HACRE. Rev Soc Argent Endocrinol Ginecol 
Reprod (SAEGRE) 17, 5-10.

[5] Murcott, S., 2012. Arsenic Contamination in the World — an International Sourceboo.IWA Publishing, London, UK.

[6] McCarty, K.M., Hanh, H.T., Kim, K.W., 2011.Arsenic geochemistry and human health in South East Asia. Rev 
Environ Health 26 (1), 71-78.



// Vol. 1, No. 1, December 2019 Arsenic in Latin America

66

[7] Bundschuh A, Pérez Carrera M, Litter MI (Eds.), 2008. Distribución del arsénico en la región Ibérica e Iberoamericana. 
CYTED, ISBN 978-84-96023-61-1.

[8] Figueiredo, B.R., Litter, M.I., Silva, C.R., Mañay, N., Londono, S.C., Rojas, A.M., Garzón, C., Tosiani, T., Di Giulio, 
G.M., De Capitani, E.M., dos Anjos, J.Â.S.A., Angélica, R.S., Morita, M.C., Paolielo, M.M.B., Cunha, F.G., Sakuma, 
A.M., Licht, O.A., 2010. Medical geology: a regional synthesis. In: Selinus, O., Finkelman RB, Centeno JA (eds) 
Medical Geology: A Regional Synthesis. Medical geology studies in South America. Book Series International Year 
of Planet Earth, Springer Netherlands, pp. 79-106.

[9] Bundschuh, J., Litter, M.I., Parvez, F., Román-Ross, G., Nicolli, H.B., Jean, J.-S., Liu,C.-W., López, D., Armienta, 
M.A., Gómez Cuevas, A., Cornejo, L., Cumbal, L., Guilherme, L.R.G., Toujaguez, R., 2012. One century of arsenic 
exposure in Latin America: A review of history and occurrence from 14 countries, Sci. Total Environ. 429, 2-35.

[10] Litter M.I., Armienta M.A., Villanueva Estrada R.E., Villaamil Lepori E., Olmos V., Arsenic in Latin America, Part I, 
In: Arsenic in Drinking Water and Food, S. Srivastava (Ed.). Springer, pp. 71-112.

[11] Litter, M.I., Botto, L., Difeo, G., Farfán Torres, E.M., Frangie, S., Herkovits, J., Ingallinella, A.M., Olmos, V., Savio, 
M., Schalamuk, I., Taylor, S., Berardozzi, E., García Einschlag, F.S., Arsénico en agua.Informe final. 2018. Grupo 
ad hoc arsénico en agua, Red de Seguridad Alimentaria, Consejo Nacional de Investigaciones Científicas y Técnicas. 
ISSN 2618-2785. DOI: 10.13140/RG.2.2.29582.20800. rsa.conicet.gov.ar/wp-content/uploads/2018/08/Informe-
Arsenico-en-agua-RSA.pdf. (Accessed November 2018).

[12] Litter, M.I., Ingallinella, A.M., Olmos, V., Savio, M., Difeo, G., Botto, L., Farfán Torres, E.M., Taylor, S., Frangie, 
S., Herkovits, J., Schalamuk, I., González, M.J., Berardozzi, E., García Einschlag, F.S., Bhattacharya, P., Ahmad, 
A., Arsenic in Argentina: technologies for arsenic removal from groundwater sources, investment costs and waste 
management practices, Sci. Total Environ., 690 (2019), pp. 778–789.

[13] Alonso, D.L., Latorre, S., Castillo, E., Brandão, P.F.B. 2014. Environmental occurrence of arsenic in Colombia: A 
review, Environ. Pollut. 186:272–281.

[14] Toujague, R., Leonarte, T., Reyes Verdecia, A., Miravet, B.L., Leal, R.M. 2003. Arsénico y metales pesados en aguas 
del área Delita, Isla de la Juventud, Cuba, Ciencias de la Tierra y el Espacio 4:27–33.

[15] Cumbal, L.H., Bundschuh, J., Aguirre, V., Murgueitio, E., Tipán, I., Chávez, C. 2009. The origin of arsenic in 
sediments from Papallacta lake area in Ecuador. In: Bundschuh, J., Armienta, M.A., Birkle, P., Bhattacharya, P., 
Matschullat, J., Mukherjee, A.B. (eds) Natural arsenic in groundwaters of Latin America, CRC Press, London, pp. 
81–90.

[16] López, D.L., Bundschuh, J., Birkle, P., Armienta, M.A., Cumbal, L., Sracek, O., Cornejo, L., Ormachea, M. 2012. 
Arsenic in volcanic geothermal fluids of Latin America, Sci. Total Environ. 429:57–75.

[17] López, D.L., Ribó, A., Quinteros, E., Mejía, R., López, A., Orantes, C. 2014. Arsenic in soils, sediments, and water 
in area with high prevalence of chronic kidney disease of unknown etiology. In: Litter, M.I., Nicolli, H.B., Meichtry, 
J.M., Quici, N., Bundschuh, J., Bhattacharya, P., Naidu, R. (eds) One Century of the Discovery of Arsenicosis in Latin 
America (1914-2014), CRC Press, London, pp. 251–254.

[18] Garrido Hoyos, S.E., Avilés Flores, M., Rivera Huerta, M.L., Nájera Flores, M.C. 2007. Diagnóstico de la presencia 
de arsénico en agua de pozo, Mixco, Guatemala. Final report TC-0711.3. Jiutepec, Mexico: Instituto Mexicano de 
Tecnología del Agua.

[19] Cebrián, M.E., Albores, A., García-Vergas, G., Del Razo, L.M. 1994. Chronic arsenic poisoning in humans: The case 
of Mexico. In: Nriagu, J.O. (ed.) Arsenic in the environment Part II Wiley, New York, pp. 93–107.

[20] Armienta, M.A., Segovia, N. 2008. Arsenic and fluoride in the groundwater of Mexico, Environ.Geochem. Health 
30:345-353.

[21] Alarcón-Herrera, M.T., Bundschuh, J., Nath, B., Nicolli, H.B., Gutierrez, M., Reyes-Gomez, V.M., Nunez, D., 
Martín-Dominguez, I.R., Sracek, O., 2013. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions 
in Latin America: Genesis, mobility and remediation, J. Hazard. Mater. 262:960–969.

[22] Birkle, P., Bundschuh, J., Sracek, O. 2010, Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs 
fluids in Mexico, Water Res. 44:5605–5617.



Arsenic in Latin America // Vol. 1, No. 1, December 2019 

67

[23] Boochs, P.W., Billib, M., Gutiérrez, C., Aparicio, J. 2014, Groundwater contamination with arsenic, RegiónLagunera, 
México. In: Litter, M.I., Nicolli ,H.B., Meichtry, J.M., Quici, N., Bundschuh, J., Bhattacharya, P., Naidu, R. (eds) One 
Century of the Discovery of Arsenicosis in Latin America (1914-2014), CRC Press, London, pp. 132–134.

[24] Ortega-Guerrero, A. 2017. Evaporative concentration of arsenic in groundwater: health and environmental 
implications, La Laguna Region, Mexico, Environ. Geochem. Health 39:987-1003.

[25] Espino-Valdés, M.S., Barrera-Prieto, Y., Herrera-Peraza, E. 2009. Arsenic presence in North section of Meoqui–
Delicias aquifer of State of Chihuahua, Mexico, Tecnociencia Chihuahua 3: 8–17.

[26] Reyes-Gómez, V., Alarcón, M., Gutiérrez, M., Nuñez, D. 2013. Fluoride and Arsenic in an Alluvial Aquifer System 
in Chihuahua, Mexico: Contaminant Levels, Potential Sources, and Co-occurrence, Water Air Soil Pollut. 224:1433–
1448. 

[27] Mar Camacho, M. L., Gutierrez, M., Alarcon-Herrera, M.T., Villalba, M.L., Deng, S. 2011. Occurrence and treatment 
of arsenic in groundwater and soil in northern Mexico and southwestern USA, Chemosphere 83:2011–225.

[28] Armienta, M.A., Villaseñor, G., Rodriguez, R., Ongley, L.K., Mango, H. 2001. The role of arsenic-bearing rocks in 
groundwater pollution at Zimapán Valley, México, Environ.Geol. 40:571–581.

[29] Sracek, O., Armienta, M.A., Rodríguez, R., Villaseñor, G. 2010. Discrimination between diffuse and point sources of 
arsenic at Zimapán, Hidalgo state, Mexico, J. Environ. Monit. 12:329–337.

[30] Ortega-Guerrero, A., 2009. Presencia, distribución, hidrogeoquímica y origen de arsénico, fluoruro y otros elementos 
traza disueltos en agua subterránea, a escala de cuenca hidrológica tributaria de Lerma-Chapala, México, Rev. Mex. 
Cienc. Geol. 26:143–161.

[31] Morales-Arredondo, I., Rodríguez, R., Armienta, M.A., Villanueva-Estrada, R.E. 2016. The origin of groundwater 
arsenic and fluorine in a volcanic sedimentary basin in central Mexico: a hydrochemistry hypothesis, Hydrogeol. J. 
24:1029–1044.

[32] Hurtado-Jiménez, R., Gardea-Torresdey, J.L. 2006. Contamination of drinking water supply with geothermal arsenic 
in Los Altos de Jalisco, Mexico, pp. 179–190. In: Bundschuh, J., Armienta, M.A., Birkle, P., Bhattacharya, P., 
Matschullat, J., Mukherjee, A.B. (eds) Natural arsenic in groundwaters of Latin America, CRC Press, London, pp. 
179–190.

[33] Altamirano Espinoza, M., Bundschuh, J. 2009. Natural arsenic groundwater contamination of the sedimentary 
aquifers of southwestern Sébaco valley, Nicaragua, Bundschuh, J., Armienta, M.A., Birkle, P., Bhattacharya, P., 
Matschullat, J., Mukherjee, A.B. (eds) Natural arsenic in groundwaters of Latin America, CRC Press, London, pp. 
109–122.

[34] Armienta, M.A., Rodríguez, R., Segovia, N., Monteil, M. 2010. Medical Geology in Mexico, Central America and 
the Caribbean. In: Selinus, O., Finkelman, R.B., Centeno, J.A. (eds) Medical geology a Regional Synthesis, Springer, 
N.Y. pp. 59–78.

[35] Guérèquiz, R., Mañay, N., Goso-Aguilar, C., Fernández-Turiel, J.L., García-Valles, M. 2009. Environmental risk 
assessment of arsenic in the Raigon aquifer. Uruguay. Biologist (Lima) 7. Special issue. C0130.

[36] Mañay, N., Pistón, M., Goso, C. 2014. Arsenic environmental and health issues in Uruguay: A multidisciplinary 
approach. In: Litter, M.I., Nicolli, H.B., Meichtry, J.M., Quici, N., Bundschuh, J., Bhattacharya, P., Naidu, R. (eds) 
One Century of the Discovery of Arsenicosis in Latin America (1914-2014), CRC Press, London, pp. 485–487.

[37] Litter, M.I.; Armienta, M.A.; Farías, S.S. (Ed.). 2009. Iberoarsen. Metodologías analíticas para la determinación 
y especiación de arsénico en aguas y suelos, Editorial Programa Iberoamericano de Ciencia y Tecnología para el 
Desarrollo, CYTED. 

[38] Gürkan, R., Kir, U., Altunay, N. 2015. Development of a simple, sensitive and inexpensive ion-pairing cloud point 
extraction approach for the determination of trace inorganic arsenic species in spring water, beverage and rice samples 
by UV-Vis Spectrophotometry. Food Chemistry. 180: 32-41.

[39] Salinas, S., Mosquera, N., Yate, L., Coy, E., Yamhure, G., González, E., 2014. Surface plasmon resonance nanosensor 
for the detection of arsenic in water. Sensors and Transducers. 183 (12): 97-102.



// Vol. 1, No. 1, December 2019 Arsenic in Latin America

68

[40] K. Siegfried, S. Hahn-Tomer, A. Koelsch, E. Osterwalder, J. Mattusch, H.-J. Staerk, J.M. Meichtry, G.E. De Seta, 
F.D. Reina, C. Panigatti, M.I. Litter, H. Harms, Introducing Simple Detection of Bioavailable Arsenic by Using 
the ARSOlux Biosensor in Rafaela, Santa Fe Province in Argentina, Int. J. Environ. Res. Public Health 12 (2015) 
5465–5482. doi:10.3390/ijerph120x0000x, http://www.mdpi.com/1660-4601/12/5/5465.

[41] Brouwer, O.F., Onkenhout, W., Edelbroek, P.M., de Kom, J.F., de Wolff, F.A., Peters, A.C., 1992.Increased 
neurotoxicity of arsenic in methylenetetrahydrofolate reductase deficiency. Clin. Neurol.Neurosurg. 94, 307-310.

[42] Chen, C.J., Chen, C.W., Wu, M.M., Kuo, T.L. 1992.Cancer potential in liver, lung, bladder and kidney due to ingested 
inorganic arsenic in drinking water. Br. J. Cancer 66, 888-892.

[43] Hopenhayn-Rich, C., Biggs, M.L., Fuchs, A., Bergoglio, R., Tello, E.E., Nicolli, H., Smith, A.H., 1996. Bladder 
cancer mortality associated with arsenic in drinking water in Argentina. Epidemiology 7, 117-124.

[44] Rahman, M., Tondel, M., Ahmad, S.A., Chowdhury, I.A., Faruquee, M.H., Axelson, O., 1999. Hypertension and 
arsenic exposure in Bangladesh. Hypertension 33, 74-78.

[45] Smith, A.H., Goycolea, M., Haque, R., Biggs, M.L.., 1998. Marked increase in bladder and lung cancer mortality in 
a region of Northern Chile due to arsenic in drinking water. Am J Epidemiol 147, 660-669.

[46] Litter M.I., Armienta M.A., Villanueva Estrada R.E., Villaamil Lepori E., Olmos V., Arsenic in Latin America, Part I, 
In: Arsenic in Drinking Water and Food, S. Srivastava (Ed.). Springer, pp. 113-181.

[47] Ayerza, A. Arsenicismo regional endémico (keratodermia y melanodermia combinadas) (continuación). Bol. Acad. 
Medicina 1917; 2-3:41-55.

[48] Gerstenfeld, S., Jordán, A., Calli, R., Farías, P., Malica, J., Gómez Peña, M.. L., Aguirre, L., Salvatierra, M., 
Leguizamón, E., Coronel, C., Flores Ivaldi, E., 2012. Determinación de zonas de riesgo al agua arsenical y prevalencia 
de HACRE en Villa Belgrano, Tucumán, Argentina. Rev. Argent. Salud Pública, 24-29.

[49] Bardach, A.E., Ciapponi, A., Soto, N., Chaparro, M.R., Calderon, M., Briatore, A., Cadoppi, N., Tassara, R., Litter, 
M.I. 2015.Epidemiology of chronic disease related to arsenic in Argentina: A systematic review. Sci. Total Environ. 
538:802–816.

[50] International Agency for Research on Cancer (IARC).2012. Arsenic, metals, fibres, and dusts. Vol 100 C. A review 
of human carcinogens. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, World Health 
Organization. Lyon (France). http://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-
Evaluation-Of-Carcinogenic-Risks-To-Humans/Arsenic-Metals-Fibres-And-Dusts-2012. (Accessed April 2018).

[51] Agency for Toxic Substances and Disease Registry (ATSDR). 2013. Course: Arsenic Toxicity. Environmental Health 
and Medicine Education. https://www.atsdr.cdc.gov/ csem/csem.asp?csem=1&po=1.1. (Accessed October 2018).

[52] Khairul, I., Wang, Q.Q., Jiang, Y.H., Wang, C., Naranmandura, H. 2017.Metabolism, toxicity and anticancer activities 
of arsenic compounds.Oncotarget. 4;8(14):23905–23926.

[53] Styblo, M., Del Razo, L.M., Vega, L., Germolec, D.R., LeCluyse, E.L., Hamilton, G.A., Reed, W., Wang, C., Cullen, 
W.R., Thomas, D.J. 2000. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in 
rat and human cells. Arch. Toxicol., 74: 289–299.

[54] Bailey, K.A., Wu, M.C., Ward, W.O., Smeester, L., Rager, J.E., García-Vargas, G., Del Razo, L.M., Drobná, Z., 
Stýblo, M., Fry, R.C. 2013. Arsenic and the epigenome: interindividual differences in arsenic metabolism related to 
distinct patterns of DNA methylation. J Biochem. Mol. Toxicol. 27:106–115.

[55] Olmos, V., Navoni, J.A., Calcagno, M.L., Sassone, A.H., VillaamilLepori, E.C. 2015. Influence of the level of arsenic 
exposure on its metabolic profile, in a population from an endemic area of Argentina. Association with the presence 
of the T860C polymorphism in arsenic 3-Methyl Transferase Gene. Hum. Exp. Toxicol. 34: 170–178.

[56] Hopenhayn-Rich, C., Biggs, M.L., Smith, A.H. 1998.Lung and kidney cancer mortality associated with arsenic in 
drinking water in Córdoba, Argentina. Int. J. Epidemiol. 27:561–9.

[57] Ferreccio, C., González, C., Milosavjlevic, V., Marshall, G., Sancha, A.M., Smith, A.H. 2000. Lung cancer and 
arsenic concentrations in drinking water in Chile. Epidemiology 11:673–679.



Arsenic in Latin America // Vol. 1, No. 1, December 2019 

69

[58] Smith, A.H., Goycolea, M., Haque, R., Biggs, M.L. 1998.Marked increase in bladder and lung cancer mortality in a 
region of Northern Chile due to arsenic in drinking water. Am. J. Epidemiol. 147:660–9.

[59] Ferreccio, C., Yuan, Y., Calle, J., Benitez, H., Parra, R.L., Acevedo, J., Smith, A.H., Liaw, J., Steinmaus, C. 
2013. Arsenic, Tobacco Smoke, and Occupation Associations of Multiple Agents with Lung and Bladder Cancer. 
Epidemiology 24:898–905.

[60] Steinmaus, C., Ferreccio, C., Acevedo, J., Yuan, Y., Liaw, J., Durán, V., Cuevas, S., García, J., Meza, R., Valdés, R., 
Valdés, G., Benítez, H., VanderLinde, V., Villagra, V., Cantor, K.P., Moore, L.E., Perez, S.G., Steinmaus, S., Smith, 
A.H. 2014. Increased lung and bladder cancer incidence in adults after in utero and early-life arsenic exposure.Cancer 
Epidemiol. Biomarkers Prev. 23:1529–1538. 

[61] Bailey, K.A., Smith, A.H., Tokar, E. J., Graziano, J.H., Kim, K.W., Navasumrit, P., Ruchirawat, M., Thiantanawat, 
A., Suk, W.A., Fry, R.C. 2016.Mechanisms Underlying Latent Disease Risk Associated with Early-Life Arsenic 
Exposure: Current Research Trends and Scientific Gaps. Environ. Health.Persp. 124:170–175.

[62] Ferreccio, C., Smith, A.H., Durán, V., Barlaro, T., Benítez, H., Valdés, R., Aguirre, J.J., Moore, L.E., Acevedo, J, 
Vásquez, M.I., Pérez, L., Yuan, Y., Liaw, J., Cantor, K.P., Steinmaus, C. 2013b. Case-control study of arsenic in 
drinking water and kidney cancer in uniquely exposed Northern Chile. Am. J. Epidemiol., 178(5):813-8.doi: 10.1093/
aje/kwt059.

[63] Liaw, J., Marshall, G., Yuan, Y., Ferreccio, C., Steinmaus, C., Smith. A.H. 2008. Increased childhood liver cancer 
mortality and arsenic in drinking water in northern Chile. Cancer Epidemiol. Biomarkers Prev. 17:1982–1987.

[64] Molina, R., Schulz, C., Bernardos, J., Dalmaso, M. 2014. Association between arsenic in groundwater and malignant 
tumors in La Pampa, Argentina. In: Litter, M.I., Nicolli, H.B., Meichtry, J.M., Quici, N., Bundschuh, J., Bhattacharya, 
P., Naidu, R. (eds) One Century of the Discovery of Arsenicosis in Latin America (1914-2014), CRC Press, London, 
pp. 644–645.

[65] Aballay, L.R., Díaz, M. del P., Francisca, F.M., Muñoz, S.E. 2012. Cancer incidence and pattern of arsenic concentration 
in drinking water wells in Córdoba, Argentina. Int. J. Environ. Health Res. 22:220–231.

[66] Martin, E., González-Horta, C., Rager, J., Bailey, K.A., Sánchez-Ramírez, B., Ballinas-Casarrubias, L., Ishida, M.C., 
Gutiérrez-Torres, D.S., Hernández Cerón. R., Viniegra Morales, D., BaezaTerrazas, F.A., Saunders, R.J., Drobná, 
Z., Mendez, M.A., Buse, J.B., Loomis, D., Jia, W., García-Vargas, G.G., Del Razo, L.M., Stýblo, M., Fry, R. 2015. 
Metabolomic characteristics of arsenic-associated diabetes in a prospective cohort in Chihuahua, Mexico. Toxicol. 
Sci. 144:338–346.

[67] Yuan, Y., Marshall, G., Ferreccio, C., Steinmaus, C., Selvin, S., Liaw, J., Bates, M.N., Smith, A.H. 2007. Acute 
myocardial infarction mortality in comparison with lung and bladder cancer mortality in arsenic-exposed region II of 
Chile from 1950 to 2000. Am. J. Epidemiol. 166: 1381–1391.

[68] Osorio-Yáñez, C., Ayllon-Vergara, J.C., Aguilar-Madrid, G., Arreola-Mendoza, L., Hernández-Castellanos, E., 
Barrera-Hernández, A., De Vizcaya-Ruiz, A., Del Razo, L.M. 2013. Carotid intima-media thickness and plasma 
asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. Environ. Health Perspect. 121:1090–
6.

[69] Zaldivar, R. 1980. A morbid condition involving cardio- vascular, bronco pulmonary, digestive and neural lesions in 
children and young infants after dietary arsenic exposure. Zbl. Bakt. I Abt. Orig. B. 170: 44–56.

[70] Robles-Osorio, M.L., Pérez-Maldonado, I.V., del Campo, D.M., Montero-Perea, D., Avilés-Romo, I., Sabath-Silva, 
E., Sabath, E. 2012. Urinary arsenic levels and risk of renal injury in a cross-sectional study in open population. Rev. 
Invest. Clin. 64:609–614.

[71] Ministerio de Salud (MSAL). 2011. Hidroarsenicismo crónico regional endémico (HACRE). Módulo de capacitación 
para atención primaria. Programa Nacional para la Prevención y Control de las Intoxicaciones (PRECOTOX). Ministerio 
de Salud. http://www.msal.gob.ar/images/stories/bes/graficos/0000000332cnt-03-Capacit_hidroarsenicismo. pdf. 
(Accessed November 2018).

[72] Ministerio de Salud (MINSAL). Guía Clínica: Vigilancia Biológica de la Población Expuesta a Arsénico, beneficiarios 
de la ley 20.590. Santiago: MINSAL, 2014. https://www.minsal.cl/sites/default/files/files/Guia_Clinica_Vigilancia 
_Arsenico_final.pdf. (Accessed November 2018).



// Vol. 1, No. 1, December 2019 Arsenic in Latin America

70

[73] Ministerio de Salud (MINSA). 2012. Guía de practica clínica para el diagnóstico y tratamiento de la intoxicación por 
arsénico, 2012 Perú. http://bvs.minsa.gob.pe/local/MINSA/2109.pdf. (Accessed November 2018).

[74] López-Carrillo, L., Gamboa-Loira, B., Becerra, W., Hernández-Alcaraz, C., Hernández-Ramírez, R.U., Gandolfi, A.J., 
Franco-Marina, F., Cebrián, M.E. 2016. Dietary micronutrient intake and its relationship with arsenic metabolism in 
Mexican women. Environ. Res. 151:445–450. 

[75] Kordas, K., Queirolo, E.I., Mañay, N., Peregalli, F., Hsiao, P.Y., Lu, Y., Vahter, M. 2016. Low-level arsenic exposure: 
Nutritional and dietary predictors in first-grade Uruguayan children. Environ Res. 147:16–23. 

[76] Código Alimentario Argentino. 2012. Bebidas hídricas, aguas y aguas gasificadas. Capítulo XII. http://www.anmat.
gov.ar/alimentos/codigoa/CAPITULO_XII.pdf. (Accessed January 2018).

[77] Instituto Boliviano de Normalización y Calidad A Norma Boliviana NB 512-2010, Agua potable – Requisitos.

[78] Health Brazil. 2011. Standards and drinkability standard of water intended for human consumption. Administrative 
Rule 2914, Brasília.

[79] NCh 409/1 Instituto nacional de Normalización, INN-Chile. 2005. Drinking Water- Part 1- Requirements.

[80] CAPRE. 1994. Normas de Calidad del Agua para Consumo Humano. Regional committee coordinator of potable 
water supply institutions and sanitation of Central America, Panamá, and Dominican Republic, San José.

[81] Ministerio de Salud, Costa Rica. 2005. Reglamento para la Calidad del Agua Potable. Pub. L. No. 32327-S. 

[82] Ministerio de la Protección Social y Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Resolución 2115. 
2007. República de Colombia, Bogotá.

[83] INEN (Instituto Ecuatoriano de Normalización). 2006. Norma 1108: Sobre requisitos del agua potable. Registro 
Oficial Nº 231, Quito, Ecuador.

[84] Guatemala, Ministerio de Salud Pública y Asistencia Social, Unidad Ejecutora del Programa de Acueductos Rurales. 
2001. Norma guatemalteca obligatoria, agua potable (especificaciones), CONGUANOR, NGO, 29.001. Guatemala: 
UNEPAR.

[85] Modificación a la Norma Oficial Mexicana NOM-127-SSA1-1994. 2000. Salud Ambiental. Agua para uso y consumo 
humano. Límites permisibles de calidad y tratamientos a los que debe someterse el agua para su potabilización. Diario 
Oficial de la Federación, 22 noviembre de 2000, Mexico City, Mexico.

[86] INAA. 2001. Normas Técnicas para el diseño de abastecimiento y potabilización de agua. Normas NTON 09003-99.

[87] Ministerio de Salud. Reglamento de la calidad del agua para consumo humano. Lima: Dirección General de Salud 
Ambiental. 2011. http://www.digesa.minsa.gob.pe/publicaciones/descargas/Reglamento_Calidad_Agua.pdf. 
(Accessed November 2018).

[88] UNIT 2010, Instituto Uruguayo de Normas Técnicas (UNIT-BID/Fomin) Referencia 833:2008. Agua Potable: 
Requisitos. http://www.ose.com.uy/descargas/Clientes/Reglamentos/unit_833_2008_.pdf (Accessed January 2014).

[89] Gaceta Oficial de la República de Venezuela Año CXXV – Mes V Caracas, 13 de febrero de 1.998, Número 36.395, 
Ministerio de Sanidad y Asistencia Social Número S.G.-018-98 11 De 02 De 1.998 187° Y 138.

[90] Litter, M.I., Morgada, M.E., Bundschuh, J. 2010. Possible treatments for arsenic removal in Latin American waters 
for human consumption. Environ. Pollut. 158:1105–1118.

[91] Sancha, A.M., Castro, M. L. 2001. Arsenic in Latin America: Occurrence, Exposure, Health Effects and Remediation. 
In: Chappell, W.R., Abernathy, C.O., Calderon, R.L. Arsenic Exposure and Health Effects IV, Elsevier B.V., 
Amsterdam, pp. 88-96.

[92] Höll., W., Litter, M.I. 2010. Ocurrencia y química del arsénico en aguas. Sumario de tecnologías de remoción de 
arsénico de aguas. In: Litter, M.I., Sancha, A.M., Ingallinella, A.M. (eds) Tecnologías económicas para el abatimiento 
de arsénico en aguas, Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, 
pp. 17–31.



Arsenic in Latin America // Vol. 1, No. 1, December 2019 

71

[93] Litter, M., Fernández, R., Cáceres, R., Grande Cobián, D., Cicerone, D., Fernández Cirelli, A. 2008. Tecnologías 
de bajo costo para el tratamiento de arsénico a pequeña y mediana escala. Revista Ingeniería Sanitaria y Ambiental 
100:41–50.

[94] Cortina, J.L., Litter, M.I., Gibert, O., Valderrama, C., Sancha, A.M., Garrido, S., Ciminelli, V.S.T. 2016. Latin 
American experiences in arsenic removal from drinking water and mining effluents. In: Innovative Materials and 
Methods for Water Treatment-Separation of Cr and As, N. Kabay, M. Bryjak (eds), CRC-Taylor & Francis, pp. 
391–416.

[95] Litter, M.I., Bundschuh, J. 2012. Emerging options for solving the arsenic problems of rural and periurban areas 
in Latin America. In: Ng, J.C., Noller, B.N., Naidu, R., Bundschuh, J., Bhattacharya P. (eds.) Understanding the 
Geological and Medical Interface of Arsenic. Taylor and Francis Group, London, pp. 267–270.

[96] Litter, M.I., Alarcón-Herrera, M.T., Arenas, M.J., Armienta, M.A., Avilés, M., Cáceres, R.E., Cipriani, H.N., Cornejo, 
L., Dias, L.E., FernándezCirelli, A., Farfán, E.M., Garrido, S., Lorenzo, L., Morgada, M.E., Olmos-Márquez, M.A., 
Pérez-Carrera, A. 2012. Small-scale and household methods to remove arsenic from water for drinking purposes in 
Latin America.Sci. Total Environ. 429:107–122.

[97] Hering, J.G., Chen, P.Y., Wilkie, J.A., Elimelech, M. 1997. Arsenic removal from drinking water during coagulation. 
J. Environ Eng ASCE 123:800–807.

[98] Bundschuh, J., García, M.E., Birkle, P., Cumbal, L.H., Bhattacharya, P., Matschullat. J. 2009. Occurrence, health 
effects and remediation of arsenic in groundwaters of Latin America. In: Bundschuh, J., Armienta, M.A., Birkle, P., 
Bhattacharya, P., Matschullat, J., Mukherjee, A.B. (eds) Natural arsenic in groundwater of Latin America. CRC Press/
Balkema Publisher, Leiden, pp. 3–15.

[99] Sancha, A.M. 2010. Remoción de arsénico por coagulación y precipitación. In: Litter, M.I., Sancha, A.M., Ingallinella, 
A.M. (eds) Tecnologías económicas para el abatimiento de arsénico en aguas, Editorial Programa Iberoamericano de 
Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp. 33–41.

[100] Sancha, A.M. 2010. Importancia de la matriz de agua a tratar en la selección de las tecnologías de abatimiento de 
arsénico. In: Litter, M.I., Sancha, A.M., Ingallinella, A.M. (eds) Tecnologías económicas para el abatimiento de 
arsénico en aguas, Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp. 
145–153.

[101] Sancha, A.M. 2010. Experiencia chilena en la remoción de arsénico a escala de planta de Tratamiento. In: Litter, M.I., 
Sancha, A.M., Ingallinella, A.M. (eds) Tecnologías económicas para el abatimiento de arsénico en aguas, Editorial 
Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp. 169–178.

[102] Bundschuh, J., Litter, M., Ciminelli, V., Morgada, M.E., Cornejo, L., Garrido Hoyos, S., Hoinkis, J., Alarcón-Herrera, 
M.T., Armienta, M.A., Bhattacharya, P. 2010. Emerging mitigation needs and sustainable options for solving the 
arsenic problems of rural and isolated urban areas in Iberoamerica - A critical analysis. Water Res. 44:5828–5845.

[103] Ingallinella, A.M., Fernández, R.G. 2010. Experiencia argentina en la remoción de arsénico por diversas tecnologías. 
In: Litter, M.I., Sancha, A.M., Ingallinella, A.M. (eds), Tecnologías económicas para el abatimiento de arsénico en 
aguas, Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp. 155–167.

[104] Hering, J.G., Katsoyiannis, I.A., Ahumada Theoduloz, G., Berg, M., Hug, S.J. 2017. Arsenic Removal from Drinking 
Water: Experiences with Technologies and Constraints in Practice. J. Environ. Eng. 143:1-1.

[105] Cardoso, S., Grajeda, C., Argueta, S., Garrido, S. 2010. Experiencia satisfactoria para la remoción de arsénico en 
Mixco, Guatemala. In: Litter, M.I., Sancha, A.M., Ingallinella, A.M. (eds), Tecnologías económicas para el abatimiento 
de arsénico en aguas, Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, 
pp. 179–189.

[106] Alarcón-Herrera, M.T., Martín-Domínguez, I.R., Benavides Montoya, A. 2007. Wetlands for arsenic removal. In: 
WETPOL 2007 2nd International Symposium on Wetland Pollutant Dynamics and Control, Tartu, Estonia.

[107] Litter, M.I., Pereyra, S., LópezPasquali, C.E., Iriel, A., Senn, A.M., García, F.E., Blanco Esmoris, M.F., Rondano, K., 
Pabón, D.C., Dicelio, L.E., Lagorio, M.G., Noel, G.D. 2015. Remoción de arsénico en localidades de la provincia de 
Santiago del Estero, Argentina. Evaluación del acceso, uso y calidad de agua en poblaciones rurales con problemas 
de arsénico, Rev. Ing. Sanit. Amb. 125:13–25.



// Vol. 1, No. 1, December 2019 Arsenic in Latin America

72

[108] Cumbal Flores, L., Zúñiga Salazar, M. 2010. Quitosano impregnado con partículas de óxido de hierro: un biosorbente 
que remueve selectivamente arsénico de aguas. In: Litter, M.I., Sancha, A.M., Ingallinella, A.M. (eds). Tecnologías 
económicas para el abatimiento de arsénico en aguas, Editorial Programa Iberoamericano de Ciencia y Tecnología 
para el Desarrollo, Buenos Aires, pp. 269–289.

[109] Castro de Esparza, M.L. 2010. Remoción de arsénico del agua de pozos de zonas rurales de Puno, Perú empleando 
ALUFLOC. In: Litter, M.I., Sancha, A.M., Ingallinella, A.M. (eds), Tecnologías económicas para el abatimiento de 
arsénico en aguas, Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp. 
243–255.

[110] Morgada, M.E., Litter, M.I. 2010. Tecnologías fotoquímicas y solares para la remoción de arsénico de soluciones 
acuosas. Estado del arte. In: Litter, M.I., Sancha, A.M., Ingallinella A.M. (eds) Tecnologías económicas para el 
abatimiento de arsénico en aguas, Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, 
Buenos Aires, pp. 73–89.

[111] Morgada, M.E., Levy, I.K., Salomone, V., Farías, S.S., López, G., Litter, M.I. 2009. Arsenic(V) removal with 
nanoparticulate zerovalent iron: effect of UV light and humic acids. Catal. Today 143:261–268.

[112] Kunz, S., Romero, L.G., Otter, P., Feller, J. 2017. Treatment of arsenic-contaminated water using in-line electrolysis, 
co-precipitation and filtration in Costa Rica, Water Sci. Technol. Water Supply 18(1):ws2017089 DOI: 10.2166/
ws.2017.089.

[113] Pérez Coll, C.S., Pabón-Reyes, C., Meichtry, J.M., Litter, M.I. 2018.Monitoring of toxicity of As(V) solutions by 
AMPHITOX test without and with treatment with zerovalent iron nanoparticles. Environ. Toxicol. Pharmacol. 
60:138–145.

Bios

María Aurora Armienta 
Hernández

Dr. María Aurora Armienta 
Hernández is a Research 
Professor at Geophysics Institute, 
Autonomous National University 
of Mexico (UNAM), Mexico. 

She has a Bachelor in Chemical Engineering, a M.Sc. 
in Analytical Chemistry, and a PhD in Hydrology. Her 
research is focused on environmental geochemistry, 
hydrogeochemistry, medical geology and geochemical 
processes related to volcanic activity. She has identified 
contamination processes and sources of metals and 
metalloids in groundwater, rivers and soils in various 
regions in Mexico, and developed solutions to the 
pollution problem. She has published 118 international 
peer reviewed articles, 47 extended abstracts, and 30 
book chapters. Dr. Armienta has supervised 12 PhD, 19 
M.Sc., and 30 Bachelor theses. She has been awarded a 
Level III National Researcher (the highest level) by the 
National Science Council of Mexico. She was the Mexican 
coordinator of the Iberoarsen international network. In 
March 2013, she received the “Juana Ramírez de Asbaje” 
award in recognition of her academic achievements at the 
University of Mexico. In 2012, 2013 and 2014 she was one 

Marta I. Litter  

Prof. Dr. Marta Litter has a 
PhD in Chemistry (Buenos 
Aires University, Argentina), 
with postdoctoral studies at the 
University of Arizona, USA. She is 
Senior Researcher of the National 

Research Council (CONICET), Full Professor at the 
National University of General San Martín (UNSAM) and 
has been Head of the Division of Environmental Chemistry 
Remediation (National Atomic Energy Commission), 
all of this in Argentina. She has more than 200 scientific 
publications in international journals, books and book 
chapters. She was the International Coordinator of the 
Iberoarsen CYTED network. She received the Mercosur 
Prize in Science and Technology (2006 and 2011) and 
was President of the International Congress on Arsenic 
in the Environment (2014). She is an active member of 
the ‘Arsenic in water’ ad-hoc group of experts of the Food 
Safety Network of the National Scientific and Technical 
Research Council (Red de Seguridad Alimentaria, 
CONICET). She is considered a pioneer in photocatalysis 
in Argentina (2016) and has been accepted as a Member of 
TWAS (2018). Corresponding author. Email: marta.litter@
gmail.com.



Arsenic in Latin America // Vol. 1, No. 1, December 2019 

73

of the ten most cited UNAM researchers in Earth sciences. 
In 2015, Dr. Armienta received the Academic and Research 
career recognition by the Mexican Geohydrological 
Society, and in 2018 she was named Teacher of the Year in 
Earth Sciences by the Mexican Geophysical Union.  

Ruth Esther Villlanueva-
Estrada

Dr. Ruth Esther Villanueva-Estrada 
graduated as Chemist at the School 
of Chemistry, at the Autonomous 
National University of México 
(UNAM) (1996), where she later 

on obtained a Master’s degree in Chemical Oceanography 
(2001) and a Doctorate in Geochemistry (2007). She is 
a staff member of the Geophysics Institute, Group of 
Dangers and Risks by Natural Phenomena (UNAM). She 
has published 23 articles in high-impact indexed journals, 
3 book chapters, 10 extensive abstracts with arbitration and 
7 technical reports. Currently, she is Head of Laboratory 
at the Geothermal Fluids Geochemistry, Geophysics 
Institute (UNAM-Michoacán Unit). Her research 
focuses on studies on A) renewable energy resources 
geochemistry, B) aqueous environmental geochemistry, 
and C) geochemical modeling of water-rock interaction.

Edda C. Villaamil Lepori

Prof. Dr. Villaamil Lepori has 
obtained a doctorate at the 
University of Buenos Aires, 
Toxicology Area (2000). She 
is Consulting Professor at the 
University of Buenos Aires, and 

Honorary Active Partner and Member of the Scientific 
Advisory Board of the International Life Sciences Institute 
(ILSI) in Argentina. She is the author of 71 articles published 
in specialized journals, 6 book chapters, and 314 papers 

presented at scientific meetings. On 77 occasions, she was a 
speaker at national and international meetings, and she has 
received 18 awards and distinctions. She is an experienced 
human resources trainer – she has directed research groups, 
doctoral and postdoctoral students, residents, researchers 
from CONICET and UBA, and interns from national 
and foreign universities. Considering national subsidized 
research projects (FONCyT, FONTAR, CONICET, 
UBACyT, SECyT-MINCyT) she has directed 13 projects, 
co-directed 7 projects, participated as a researcher in 17 
projects, and has coordinated 3 international projects in 
the region (AECI) related to the topic of Arsenic. She acts 
in the area of Toxicology, with emphasis on Toxicology 
of Persistent Pollutants, Environmental Toxicology and 
Occupational Toxicology. In her professional activities she 
has interacted with 129 collaborators in co-authorships of 
scientific works.

Valentina Olmos

Dr. Valentina Olmos has obtained 
a Doctorate in Pharmacy and 
Biochemistry at the University 
of Buenos Aires (2016). She is 
Researcher and Professor Teaching 
Assistant at the School of Pharmacy 

and Biochemistry, University of Buenos Aires. Her research 
is focused on arsenic exposure assessment and arsenic 
health risk assessment. She is an Emeritus member of the 
Argentine Society of Toxicology (Asociación Toxicológica 
Argentina) and a full member of the Society of Toxicology 
(SOT, USA). She is review editor at Acta Toxicológica 
Argentina Journal since 2006. She is an active member of 
the ‘Arsenic in water’ ad-hoc group of experts of the Food 
Safety Network of the National Scientific and Technical 
Research Council (Red de Seguridad Alimentaria, 
CONICET). She authored 33 scientific publications in 
national and international scientific journals. She authored 
more than 50 presentations to national and international 
scientific meetings.


